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Abstract 

A new surrogate time series model for the monthly solar F10.7 radio flux index and 
the sunspot number is presented. The model incorporates varying solar cycle ampli-
tude and length. The sunspot model is driven by the F10.7 model, with a transform 
and a noise term, thus preserving the observed strong correlation between F10.7 and 
sunspot number in any given surrogate time series. The model can be used to gener-
ate realistic scenarios of solar cycle variation over years to decades into the future. 
We also present a daily model of F10.7 that adds in residual random variation 
observed on sub-monthly timescales. Such surrogate solar activity models can be 
used in long-term satellite mission planning, e.g., to drive geophysical models such 
as atmospheric drag, solar particle intensity, and low-altitude radiation belt proton 
interactions with the thermosphere. 
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1.  Introduction 

Many geophysical models are parameterized by solar activity. These models capture, in one way or 
another, solar cycle variations in solar emissions and eruptions and the consequences in interplanetary 
space and at Earth. Space system design depends on understanding these consequences as they impact 
satellites. Such impacts include solar cycle variation in the upper atmosphere and solar cycle depend-
ence of the likelihood of solar energetic particle events.  

With the recent development of the AE9/AP9 models of the trapped radiation at Earth [Ginet et al., 
2013], it will soon become necessary to tie the Monte Carlo dynamic scenarios produced by AP9 to 
variations in solar activity both through modulation of the proton flux at low altitude (in and near the 
thermosphere) and through generation of dynamic scenarios of solar proton flux to couple to the 
trapped scenarios from AP9. Additionally, a solar cycle scenario-based approach may prove appro-
priate for bounding satellite re-entry forecasts.  

The ability to generate an arbitrary number of realistic scenarios of solar activity far into the future 
(decades) will enable transition of more of our knowledge about how the Sun-Earth system behaves 
into our satellite mission design and planning. We have selected the F10.7 cm solar radio flux index 
[Tapping, 2013, and references therein] and the international sunspot number [Vaquero, 2007] as the 
two parameters most widely used to drive solar and geophysical models that satellite designers might 
employ. We have developed a statistical parameterization of the random fluctuations in solar activity 
as the solar cycle length and intensity vary from cycle to cycle, including the short-term, month-to-
month variations, as well as the strong, but not perfect, correlation between F10.7 and sunspot num-
ber. To do this, we extend the F10.7 model of Xapsos et al. [2002] to incorporate stochastic variations 
and to produce a sunspot number. We have also produced an adjunct daily F10.7 model based on the 
monthly model. 
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2.  Formulation of the Model 

We begin with the Xapsos et al. [2002] model (hereafter the Xapsos model), which provides the 
F10.7 index as: 

 𝑓(𝑡) =  𝐴𝑔(𝑡) + 𝐵 (1) 

 𝑔(𝑡) = 𝜈(𝜈𝑡)𝑘−1

Γ(𝑘)
𝑒−𝜈𝑡 (2) 

 𝐹𝑚𝑎𝑥 = 𝑎 × 𝑠 + 𝑢 (3) 

 𝑠 =  −ln (− ln(𝐶)) (4) 

 a = 33.22 (deprecated) (5) 

 u = 167.44 (deprecated) (6) 

 𝐴 = 5.214𝐹𝑚𝑎𝑥 − 400 (7) 

 𝐵 = 92.3− 0.158𝐹𝑚𝑎𝑥 (deprecated) (8) 

 𝑘 = 7.562− 0.006825𝐹𝑚𝑎𝑥 (9) 

 ν = 1.25 (10) 

Here, t is years since solar minimum, Γ(k) is the complete gamma function, and C is the desired con-
fidence value. This set of equations provides a smoothly varying time series of F10.7 for a given con-
fidence value. These details in Eqs. (3)−(10) were provided by M. Xapsos in a private communica-
tion. Some values, as we will see, have been deprecated, as they will be replaced by updated numbers. 

We reformulate the model to introduce inter-cycle and intra-cycle variation beyond the basic pattern 
determined from C. 

 𝑓𝑡;𝑧𝑡 =  �𝐴(𝐶𝑡)𝑔 �mod(𝑡,𝑇𝑡) 𝑇�
𝑇𝑡

;𝐶𝑡�+ 𝐵� exp 𝑧𝑡
(1). (11) 
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Here we have replaced constant C with a varying Ct to allow F10.7 to vary on short timescales around 
the whole-cycle confidence value. Because our simulations run for multiple cycles, we have intro-
duced a modulus to reset t at the end of each cycle. We have also allowed the cycle length Tt to vary 
over the simulation. The average value of Tt is given by 𝑇�. Finally, we include a short-term multi-
plicative noise factor controlled by a Gaussian random variable 𝑧𝑡

(1). 

The time varying parameter Ct must remain on the domain [0,1]. Thus, we will control Ct with a 
Gaussian random variable zt

(2) that we transform onto [0,1] using cumulative standard normal distri-
bution Φ: 

 𝐶𝑡 = Φ�𝑧𝑡
(2)�. (12) 

Next, we introduce a variable solar cycle length Tt, which has a Gaussian distribution with mean 𝑇� 
and standard deviation σT: 

 𝑇𝑡 = 𝑇� + 𝑧𝑡
(3)𝜎𝑇. (13) 

The random variable zt
(3) is also Gaussian. 

The sunspot number St is computed from F10.7 using a nonlinear transform and another noise factor: 

 𝑆𝑡 = �max �0,𝑓𝑡;𝑧𝑡 exp �𝑧𝑡
(4)� − 𝑏� /𝑚�

1/𝛾
. (14) 

As before, zt
(4) is a Gaussian random variable. Note that max(a,b) yields the larger of a or b, and is 

used here to ensure that the sunspot number is never negative. 

The four random variables 𝑧 are all Gaussian with zero mean, so they can evolve in time according to 
an autoregressive process. Specifically: 

 𝑧𝑡+1 = 𝑊𝑧𝑡 + 𝑍𝜉𝑡, (15) 

where W controls persistence, and Z controls innovation, and 𝜉𝑡 is a 4-element vector of Gaussian 
white noise with zero mean and unit variance and no correlation among the vector elements. By for-
mulating the model this way, we allow for correlation among the random variables (z’s) and (1st-
order) temporal correlation among them as well. 

A daily F10.7 model is useful in some cases because, for example, daily F10.7 is used as an input to 
MSIS [Picone et al., 2002]. Our daily F10.7 model is simply an add-on to the monthly F10.7 model. 
Namely: 

 𝑓𝑡,𝑑𝑎𝑖𝑙𝑦 = 𝐵𝑑𝑎𝑖𝑙𝑦 + �𝑓𝑡,𝑚𝑜𝑛𝑡ℎ𝑙𝑦 − 𝐵𝑑𝑎𝑖𝑙𝑦�exp (𝑧𝑡
(5)). (16) 
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The random daily variation is captured in zt
(5), which varies according to another first-order auto-

regressive equation: 

 𝑧𝑡+1
(5) = 𝑊�5𝑧𝑡

(5) + �̂�5𝜉𝑡+1
(5) . (17) 

Here the time step is one day, and 𝜉𝑡
(5) is Gaussian white noise with zero mean and unit variance. The 

monthly F10.7 model values are linearly interpolated onto the daily time tags assuming the monthly 
value occurs on the 15th of the month. Note, this model does not guarantee precise agreement between 
the monthly average of the daily model and the monthly model itself. 

Because the form of the model was derived in part simultaneously with fitting its parameters, the next 
section will include some discussion of how we arrived at Eqs. (11)–(17), as well as the fitted results. 
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3.  Derivation of the Model Parameters 

First, we must determine the mean 𝑇� and standard deviation σT of the sunspot cycle length, and show 
why a Gaussian is an appropriate model. Using the full record of the sunspot number from 1749 to 
present, we determine the length (min to min) of each of 23 solar cycles. The time of minimum is 
found automatically from 12-month smooth monthly sunspot number, and the maximum is taken 
from the original monthly value once the minima are identified. Figure 1 (left) shows the sunspot 
number history, the smoothing, and the identified minima. The average time between minima is 10.92 
years, and the standard deviation is 1.27 years. Figure 1 (right) shows a quantile-quantile plot com-
paring the distribution of sunspot cycle length to quantiles of a Gaussian. The fact that the blue 
crosses fall near the red line indicates that the distribution of Tt is well-approximated by a Gaussian. 

Similarly, we can compute the [2:3,2:3] submtarices of W and Z (these are the persistence and inno-
vation parts of the sunspot length model). We denote these submatrices 𝑊�  and 𝑍�. We convert the 
time series of solar cycle length and amplitude to Gaussian variables by replacing each entry in either 
time series with Φ-1[i/(N+1)], where i is the entry’s rank order (1 for smallest value, N for largest), N 
is the number of points in the time series. From these transformed variables, we compute the 2x2 
covariance Σ and lag covariance R. Then we have: 

 𝑊� = �𝑅Σ−1�
1/(12𝑇�)

. (18) 

The matrix power converts from solar cycle timescale to monthly evolution. 

 
Figure 1.  (Left) History of Sunspot number and automatically-identified minima. (Right) 

Quantiles of cycle length versus standard normal distribution (a straight line indi-
cates a Gaussian distribution). 
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 𝑍�𝑍�𝑇 = Σ −𝑊�Σ𝑊� 𝑇. (19) 

𝑍� is computed by Cholesky factorization of 𝑍�𝑍�𝑇. We also store the last sunspot cycle length (12.42 
years) for later use. 

Next, we move on to F10.7, which is the core of the model. We compute B by taking the minimum 
F10.7 observed, which is 66.5. Then we repeat the solar min finding and max amplitudes for the 
monthly F10.7 time series (5 solar cycles). We fit each cycle to the form of (1), allowing Fmax and B 
to vary, and scaling time to match 𝑇�. The history of F10.7 and the fit are given in Figure 2. This gives 
us five estimates of Fmax, from which we can derive new a (29.3165) and u (186.1612). We also 
obtain the last value of Fmax (189.59) and the date of the last minimum (1 Dec 2008, a month before 
the official date of the last minimum). These “last” values will be used to initialize the Monte Carlo 
scenarios. 

Next, we look at the log residuals after the fitting of F10.7. A Q-Q plot shows they are Gaussian (Fig-
ure 3). They have a significant lag correlation, leading to W11 of 0.7137, and the rest of the residual is 
carried by a Z11 of 0.0905. The total log residual represented by z1 is 0.1292, or a 12.92% relative 
residual, with a correlation coefficient of 0.7137 at one-month lag. 

We use the F10.7 model as the basis of the sunspot number model. We had to decide whether to add a 
monthly noise term before or after the transform from F10.7 to sunspot number. We determined that 
the relative residuals of sunspot number to a rescaled fitted F10.7 were both Gaussian and strongly 

 
Figure 2. History of F10.7 with automatically identified minima and fit to parametric form (11). 
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Figure 3.  A Q-Q plot of F10.7 log residuals for the 

monthly model shows they are Gaussian. 
 

correlated with the F10.7 residuals relative the same fitted F10.7 (Figure 4). Thus, we add the sunspot 
number residual after transforming the simulated F10.7, as shown in Eq. (14). 

We also have to generate W44 and Z44, which govern the residuals in the sunspot number model. First, 
however, we have to obtain the parameters of the transform: m, b, and γ, used in (14). The exponent γ 
is determined by visual fitting (i.e., trial and error) to be 1.1. Then the other parameters are deter-
mined by least-squares fitting to be m=0.5336, and b=66.71. Z44 and W44 are respectively 0.1099 and 
0.6505, for a total relative residual of 14.47% in the sunspot number model and a one-month lag cor-
relation coefficient in the log residual of 0.6505. 

 
Figure 4.  (Left) Q-Q plot of sunspot number residuals transformed to F10.7 domain. (Right) 

Deviations of sunspot number from smooth model are strongly correlated with  
corresponding devaitions in F10.7. 
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This completes the calculation of the W and Z matrices: 

 𝑊 =

⎣
⎢
⎢
⎡
𝑊11 0 0 0

0 𝑊�11 𝑊�12 0
0 𝑊�21 𝑊�22 0
0 0 0 𝑊44⎦

⎥
⎥
⎤

= �

0.7137 0 0 0
0 0.9923 −0.0123 0
0 0.0089 0.9957 0
0 0 0 0.6505

� (20) 

 𝑍 =

⎣
⎢
⎢
⎡
𝑍11 0 0 0
0 𝑍�11 𝑍�12 0
0 𝑍�21 𝑍�22 0
0 0 0 𝑍44⎦

⎥
⎥
⎤

= �

0.0905 0 0 0
0 0.0749 0 0
0 −0.0183 0.1230 0
0 0 0 0.1099

� (21) 

For the daily model, we obtained Bdaily of 50 by visual fitting to obtain a Gaussian distribution of the 
log residuals. Figure 5 shows that the resulting residuals are indeed Gaussian. The parameters of the 
autoregressive model are 𝑊�5=0.9215 and �̂�5=0.0789, for a total residual relative error of 20.32%, 
with a daily lag correlation of 0.9215 for log residuals. 

The model coefficients derived from monthly sunspot numbers from January 1749 to May 2013 and 
Penticton adjusted F10.7 from February 1947 to May 2013. 

 
Figure 5.  A Q-Q plot of F10.7 log residuals for the daily 

model shows that they are Gaussian. 
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4.  Demonstration 

Now that we have obtained all the needed parameters for our model, we conduct two different 
demonstrations: First, we will run it for many scenarios of a single solar cycle with random starting 
points (i.e., not stitched on to the most recent F10.7 and Sunspot data). Then we will run many sce-
narios starting from the most recent conditions out several cycles into the future. 

Figure 6 shows many scenarios of the F10.7 and Sunspot number model. Note that due to variation in 
the cycle length, a couple of the cases start a new cycle in year 9 or 10, and that those are the same 
scenario (color) for F10.7 and sunspot number. Also note that the new model adheres to the bounds 
provided by the Xapsos model, with updated coefficients. Also, there is a mathematical discontinuity 
between cycles at solar minimum, but it is negligible compared to the random residuals controlled by 
z1 and z4. 

Figure 7 shows an application of the model to the current situation: we must project forward from the 
current conditions several cycles into the future. We see that starting around 2050 the different sce-
narios start to drift out of phase, and by 2100, the phases are nearly random. 

 
Figure 6.  Many scenarios of an arbitrary solar cycle. (Top) Sunspot Number. (Bottom) 

F10.7. Dark curves provide percentiles of the updated Xapsos model. 
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Figure 7.  Ten scenarios of the solar cycle model, showing sunspot number (top) and F10.7 

(bottom). All scenarios are built to match the most recent observations and 
continue randomly thereafter. 

 
To make each Monte Carlo series match current conditions, we determined the set of 𝑧0 parameters 
that match the latest F10.7 and SSN observations. We used the date of last minimum, and the last 
maximum F10.7 determined in Section 3. We first make a preliminary estimate of 𝑧. Our preliminary 
z0

(1) is 0; our preliminary z0
(2) is −0.2255 based on the last Fmax being 189.59; our preliminary z0

(3) is 
1.1775 based on a latest sunspot cycle length of 12.42 years determined in Section 3; finally, our pre-
liminary estimate of z0

(4) is 0. We then update our estimates of z0
(1) to −0.3488 to match the last F10.7 

of 134.2 observed for May 2013. At this point, in order to address the possibility that z0
(1) is very 

large, we update z0
(1) and z0

(2) via a least-squares fitting that minimizes the following penalty function: 

 �𝑧0
(1)�

2
+ (𝑧02)2 + �log134.2−log𝑓𝑡;𝑧0�

2

0.0167
. (22) 

The denominator in the final term is the variance of the log residual in the F10.7 model. This fitting 
procedure yields z0

(1) of −0.3730 and z0
(2) of −0.0781. Finally, we set z0

(4) to −0.0189 to match the last 
sunspot number of 78.7. With these initial values of 𝑧0 (−0.3730, −0.0781, 1.1775, and −0.0189), we 
can apply the Monte Carlo model to advance arbitrarily far into the future past May 2013. Each sce-
nario into the future differs only in the random number seed used to generate the time series of inno-
vations 𝜉 in (15). 

For the daily model, we similarly have to set the initial value of z0
(5), which we do based on the last 

observation in our dataset: 16 May 2013, for which F10.7 is 148.0, giving a z5 of 0.1518. We can then 
simulate an arbitrary number of scenarios after 16 May 2013. We do this for 10 scenarios in Figure 8. 
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In both the daily and the monthly simulations, the recent slow rise to maximum drags the “static” 
model down, but the Monte Carlo models show more natural variability. 

 
Figure 8.  Ten scenarios from the daily F10.7 model. The static model does not update the 

daily residual or the monthly model parameters. 
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5.  Validation 

Aside from visually validating the profiles shown in Figures 6−8, we should also confirm that the 
marginal distribution of sunspot number and F10.7 is preserved by our simulation. Figure 9 shows 
three more Q-Q plots. For the bulk of the distribution, the plots lie along the expected diagonal. Some 
divergence at the largest sunspot numbers or F10.7 values indicates that the largest values of F10.7 or 
sunspot number are more (daily) or less (monthly) rare in the model than in the recent data. At this 
time, it is not known whether that represents an anomalous solar max or a part of the distribution that 
should be included in a future model. The fact that the daily and monthly models disagree in the 
direction of their deviation from the straight line suggests it is a benign sample size effect. 

 
Figure 9.  Q-Q plots for simulated versus observed sunspot number (top), 

monthly F10.7 (middle), and daily F10.7 (bottom). 
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6.  Summary 

We have developed a coupled bivariate time series model of the monthly solar activity indices F10.7 
and sunspot number. We have also developed a daily F10.7 model that builds on the monthly model 
These models can be used to generate hypothetical scenarios of future variation in the solar cycle. 
Such a capability can be used, for example, for modeling long-term thermospheric variability, which 
is important for satellite mission planning: namely, as it applies to drag and variation of proton radia-
tion in the South Atlantic Anomaly. These models can also be used to drive solar particle event mod-
els, which, in some cases, control the frequency and intensity of the solar particle events through solar 
activity indices. 
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